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The cytoskeleton is not an equilibrium structure. To develop theoretical tools to investigate such nonequi-
librium assemblies, we study a statistical physical model of motorized spherical particles. Though simple, it
captures some of the key nonequilibrium features of the cytoskeletal networks. Variational solutions of the
many-body master equation for a set of motorized particles accounts for their thermally induced Brownian
motion as well as for the motorized kicking of the structural elements. These approximations yield stability
limits for crystalline phases and for frozen amorphous structures. The methods allow one to compute the
effects of nonequilibrium behavior and adhesion �effective cross-linking� on the mechanical stability of local-
ized phases as a function of density, adhesion strength, and temperature. We find that nonequilibrium noise
does not necessarily destabilize mechanically organized structures. The nonequilibrium forces strongly modu-
late the phase behavior and have comparable effect as the adhesion due to cross-linking. Modeling transitions
such as these allows the mechanical properties of cytoskeleton to rapidly and adaptively change. The present
model provides a statistical mechanical underpinning for a tensegrity picture of the cytoskeleton.
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I. INTRODUCTION

Life presents us with many structures that are driven far
from equilibrium. Examples are abundant even at the level of
a single cell. Under the pressure of competition, cells must
be able to respond quickly yet in a controllable fashion. Cel-
lular dynamics is not based on passive diffusive processes,
but instead uses “active” transport and consumes energy
sources, e.g., by the hydrolysis of ATP and GTP �1,2�. Nev-
ertheless the dynamics of individual small protein molecules
and ligands are seldom far from equilibrium owing to the
relative strength of the thermal buffeting inherent at the
smaller length scales. Diffusion alone �3� �or with some help
from electrostatic steering �4�� should be enough to move
small molecules around. However, the thermal forces by
themselves become less capable of moving and reorganizing
the larger and larger multi-protein assemblies of the cell. At
the scale of entire biological cells, structures are not rear-
ranged just by equilibrium thermal forces but require motors
and polymerization processes that use and dissipate chemical
energy to form and function. It is therefore interesting to
study the generic properties of nonequilibrium structure for-
mation �5� and to answer questions such as how does the
far-from-equilibrium character of assembly change the phys-
ics of cooperative transitions when compared to equilibrium
cases?

The cytoskeleton, a major component of all eukaryotic
cells, has long been a mysterious substance �protoplasm!�
with unusual physical properties such as active movements
and the ability to internally rearrange �2�. These properties
are arguably near the top of the list of those attributes that
define life as we know it. Motivated by trying to understand
the nonequilibrium assembly and remodeling of the cell
�1,6�, we study here a minimal caricature of the cytoskeleton
that has some of its most essential features: a model of in-

teracting motorized particles. As a simplified model, it is
designed to answer rather fundamental questions when is
such an assembly mechanically stable and when is it fluid,
and to what extent can the nonequilibrium forces modulate
this? The cytoskeleton in different organisms or even during
different parts of the cell cycle exhibits quite a rich variety of
viscoelastic properties �7–9�. At a minimum, one imagines
that the cytoskeleton should exhibit at least one plastic/fluid
phase to facilitate the reorganization of the cell and another
elastic/solid phase to support the cell shapes and fulfill other
mechanical functions.

Unlike an equilibrium system, we cannot use the
ergodicity-based partition function approach to study motor-
ized particle assemblies. Instead, we will study steady states
by directly solving a many-body master equation for particle
locations using variational methods. As in the theory of equi-
librium crystals and quenched glasses, we can use the inverse
of the mean-square deviation from a set of fiducial sites as an
order parameter to indicate this nonequilibrium transition.
The transition from a localized phase to a fluid phase can
then be recognized by the localized phonon frequency dis-
continuously dropping to zero with changing environmental
parameters such as decreasing the particle density. We con-
struct and solve the self-consistent equations for this order
parameter �̃ from dynamical equations.

Originally the word “tensegrity” �tensional integrity, de-
fined as a stable three-dimensional structure consisting of
members under tension that are contiguous and members un-
der compression that are not �Oxford Dictionary�� was used
in architecture. This word has recently been used to describe
many features of the cytoskeleton. An interesting tensegrity-
based model for the cytoskeleton maps the microtubules onto
the compression component and other biopolymers the ten-
sional components. This model was proposed and its conse-
quences for cytoskeletal behavior have been discussed by
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Ingber and co-workers �10,11�. The tensegrity models con-
sidered by engineers and mathematicians �12� have a well-
defined �and often simple� deterministic structure. For this
reason, the concept has not been accepted completely in the
field of cellular mechanics. In a more general sense, the most
important concept underlying tensegrity is the existence of a
prestress of the system due to the antagonistic interactions
among the particles �13�. Thus considering that the forces
required for such a strained assembly in the cell are gener-
ated by nonequilibrium polymerizations and movements of
motor proteins, the present model can be viewed as a statis-
tical treatment of such a generalized tensegrity system.

The paper is organized as follows. We present the physics
of our model in Sec. II. The variational methods used to
solve for the stability limits of this nonequilibrium many-
particle system are presented in Sec. III. We analyze the
results in Sec. IV and summarize the importance of nonequi-
librium forces for cytoskeletal structures in the last section.
A brief summary of this approach dealing with the special
case of nonadhesive hard-sphere appeared earlier in Ref.
�14�.

II. MOTOR-PROPELLED PARTICLES

The forces generated by energy consumption in the cell
often have two types of mechanisms: they may arise from �1�
rigid or semi-flexible fibril polymerization or from �2� defor-
mation of motor proteins. It has been discovered that the
self-assembly processes for actin filaments and microtubules
are not near-equilibrium processes �15�. The speeds of poly-
merizations at the two ends of those linear structures are not
the same, so we can have a tread-mill-like “perpetual mo-
tion” so long as fuel is available. Through delayed hydrolysis
of energetic nucleoside triphosphate �NTP�, the system con-
sumes energy and generates motions and forces �1�. One
celebrated example of such directed motion by assembly is
the “comet tail” created by bacteria Listeria to push itself
through host bodies by polymerizing actin monomers of host
cells �16,17�. A second example is provided by the microtu-
bule aster’s ability to position itself by polymerizing tubulin
dimers �18�. Besides the direct polymerization induced
forces, the “walking” of linear motor proteins on these poly-
mers �such as myosins on actin filaments and dyneins on
microtubules� also generates force at the cost of the hydroly-
sis of corresponding NTPs.

It is therefore very interesting to see how the nonequilib-
rium aspects of fuel consumption can affect the assembly of
structures in cells. Inspired by the statistical mechanics of
force-generating self-assembly and remodeling of single
fibrils by polymerization as well as models of motor pro-
teins, we build a simple model to study the most generic
aspects of nonequilibrium mechanical structures. Our almost
literally “spherical cow” model is a collection of particles
that interact through an isotropic potential, while the motor-
ized part of their motions still may have anisotropy. These
spherical particles are energized by intrinsically attached mo-
tors. The radial symmetry assumption for the mechanical
part of the interactions is terribly oversimplified for real ap-
plications of cytoskeleton assembly, but the spherical model

is meant to separate those aspects of the complexity due to
the far-from-equilibrium effects from other complications
coming from geometry �19,20�. The generalization of these
results to more complicated geometries seems quite feasible.

We use a stochastic description of the motions of the par-
ticles. This enables us to describe the nonequilibrium noise
well. There are three types of forces acting on the particles in
motorized particle systems. Apart from �1� the usual �me-
chanical� interactions �uij�rij� between particles, �2� thermal
noises and viscosity, there also will be �3� motor propelling
forces which obey the rules of the stochastic chemical reac-
tions of single motor molecules.

We model the pairwise interaction u�r� among particles as
an adhesive hard-sphere potential. This form is often used
when describing biomolecular assembly at equilibrium such
as occurs during protein crystallization �21�. Two forms of
attractive potential usw and ust are chosen for our study: the
square-well potential usw�r�ª−A���d−r�+����1−r�
and the saw-tooth potential ust�r�ª−A��d−r� / �d−1��
���d−r�+����1−r�. Both have an energy parameter A
to describe the depth of the attraction and a width parameter
d to describe the width of the attraction as shown in Fig. 1.
The short distance hardcore repulsion part prevents the over-
lapping of particles. The mid-ranged attractions in this model
mimic the effective cross-linking by linker proteins between
elements of the cytoskeleton. By using this simplified inter-
action and using minimal dynamical rules, our model re-
sembles the portrait of the cytoplasm provided by Francis
Crick: a “Mother’s Work Basket—a jumble of beads and
buttons of all shapes and sizes, with pins and threads for
good measure, all jostling about and held together by colloi-
dal forces” �22�.

The equation of motion for a given motorized particle i is

mir�̈i=−� j�i�iuij −�r�̇i+��t�t�+ f�m�t�. Here r�i is the position of

the i th particle and �� and f�m are thermal noise and nonequi-
librium noise, respectively. The time scales we are interested
in are longer than the lifetime of the momentum autocorre-
lation function �the time scale of typical collisions�. By vir-
tue of this clear separation of time scales, we can eliminate
fast modes and adopt the overdamped limit of the Langevin

FIG. 1. Adhesive hard sphere potentials ust�r� and usw�r�.
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equation: r�i=	Df�i+
� i�t�+v� i
m. The thermal noise 
� is a

Gaussian white noise with the first two moments as
�
� i�t��=0 and �
i

��t�
 j
	�t���=2D��	�ij��t− t��. Here the sys-

tematic force f�i=−�iU is based on the mechanical potential

U��r�	�=��ij�u�r�ij�. The motor term v�m�t�=� j�� j��t− tj� gives a
time series of shot-noise-like kicks. The noise properties of
the motor terms depend on the underlying biochemical
mechanism of the motor as we detail below.

To study the possible macroscopic phases of this collec-
tion of motorized particles, it is convenient to use the master
equation to track the dynamics of the probability distribution
function ��r�1 ,r�2 , ¯ ,r�n , t� of the particle configurations,

��t − �L̂FP + L̂NE�����r�	,t� = 0 �1�

rather than the Langevin description. Here the Fokker-Planck
�FP� operator

L̂FP ª D�
i

�i · ��i − 	f�i · � �2�

describes the thermal motions. An integral operator L̂NE sum-
marizes the nonequilibrium kicking effect of the motors:

L̂NE���r�	� =
 idr�� i � �K�r�
� 	→�r�	���r�� 	� − K�r�	→�r�

� 	���r�	�� .

�3�

To specify the nature of the chemical noise, we assume
the following properties for our simple motors: The motors
are firmly built in the particles. They work by consuming
chemical energy sources such as ATP. In a single chemical
reaction event, the motor makes a power stroke �which in-
duces a discrete conformational change� that moves the par-
ticle by a distance of � in the direction n̂. Motor kicking can
be modeled as a two-step stochastic process: in step I, the
energy source binds to the motor, and in step II, the reaction
and the resulting conformational change make a power
stroke. The rate of the first step depends on the concentration
of the energy source while the rate of the second step de-
pends on the coupling between the structural rearrangements

and the external forces, k=k0 exp�s	�U�r��−U�r�+����	, i.e.,
motors may slow down when they work against mechanical
obstacles.

Note in the case of the cytoskeleton filaments, the kinetics
of the “motor” describes the growing and shrinking of the
filament which effectively move the center of mass of the
“particle.” The slowing of the “motor,” i.e, the decrease of
growth rates of the ends of filaments against walls �thus un-
der tension�, has been demonstrated in the case of microtu-
bules �23�.

The coefficient s describes the coupling strength between
chemical noises and mechanical interaction. The limit that
s→1 will be called a susceptible motor and the limit s→0
an adamant motor. We use these names in the sense that an
adamant motor is not sensitive to the thermal environment.
Each power stroke of such a motor uses and wastes a lot of
energy. The difference in the mechanically environmental
cost is negligible. On the other hand, the susceptible motor is

an energy saving motor since it “rides” with downhill energy
and slows down when going uphill. The energy cost is com-
parable with the part needed to combat the change of the
mechanical potential. Since going uphill and downhill may
involve two different mechanisms, we specifically use su and
sd to label them, i.e., su and sd are not necessarily related. For
example, the dynamics of polymerization process has an
su�0 but sd=0. This means growth only slows down with
loaded forces �23�, but never speeds up. Depending on their
detailed biochemistry, motorized particles propelled by real
motor proteins could have both su and sd nonzero.

To further simplify, we assume step II �the reaction itself�
is the bottle-neck, and therefore the rate of mechanically in-
duced step is only weakly dependent on step I or on the
concentration of the source. Thus we presently ignore the
complication of noises arising from the binding step, though
at low concentration the competition between the particles
for fuel may have interesting consequences. We assume the
overall statistics of the time-series of kicks is described by a

Poisson process with position r� as � exp�s	�u�r�+���−u�r���	.
As for the direction n̂�t�, we imagine that it will gradually

lose its initial orientation due to the interaction with other
particles over a time scale of �. We study explicitly two
extreme cases of motor statistics here, although more general
models are possible. For persistent kicking, we assume � is
very large compared to the time scale of observation, i.e.,
each motor always kicks in a predefined direction. There is a
special case in which each motor kicks at the same labora-
tory direction. We term this polar kicking �as a distinction
between the general persistent kicking for which each par-
ticle has a preferred direction, but their directions are ran-
domly distributed�. For the opposite limit, that where the
reorientation � is very short, we use the term isotropic kick-
ing.

III. METHODS: VARIATIONAL APPROACHES

Our strategy to study the stability of nonequilibrium solid
phases is as follows: we first construct a set of trial probabil-
ity distribution functions of particle positions with variable
localization parameters under given environmental param-
eters such as particle density and properties of motorized
particles such as kicking strength. We then use nonhermitian
variational or square Hermitian variational method to mini-
mize the functional with various trial functions. By changing
environmental parameters and tracing the drastic changes of
the corresponding optimal solutions, from localized distribu-
tion functions to delocalized forms, we can identify the criti-
cal parameters for the destabilization transition.

The master equation �t�= �L̂FP+ L̂NE�� cannot be simply
made Hermitian by the canonical transformations of the left
and the right states as is commonly done for a usual FP

operator. The reason is that the kicking forces from L̂NE can-
not be derived from an explicit potential. We need to use
either the moment closure method or the square Hermitian
method to solve the stochastic many-particle problem.

A. The moment closure (non-Hermitian variational) method

It is unclear whether there is a general variational prin-
ciple for nonequilibrium systems that can achieve the same
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status as the free energy optimizations for equilibrium sys-
tems. But it is not unusual to convert a set of dynamical
equations to corresponding variational formulations. Still it
is a convenient approach, especially for problems with con-
straints pioneered by Eyink �24�. Since we do not add any
constraints, the Eyink procedure gives exactly the same for-
mulation as does the moment closure approach �25�.

For convenience, we detail here the calculations for iso-
tropic kicking. We will generalize them to the case of the
persistent kicking below. Using the description of the prop-
erties of the motor in the previous section, we write the kick-
ing operator’s action on states as

L̂NE� = �
i

�i
 1

4�
d2n̂
 dr�� i�w�U�. . . ,r�� i, . . . �

− U�. . . ,r�i, . . . �� � ��r�i − r�� i − ������r�� 	�

− w�U�. . . ,r�i, . . . � − U�. . . ,r�� i, . . . ��

���r�i − r�� i + ������r�	�	 . �4�

We assume the time series of the kicks by the motor sat-
isfies Poisson statistics. The rate w is position dependent:

w = exp�su	�U����U� + exp�sd	�U���− �U� . �5�

The usual localized Gaussian trial function of the prob-
ability distribution function is expressed as

���r�	;�R� 	� = exp�− �
i

�̃i�r�i − R� i�2� . �6�

Here the positions of particles are �r�	r�1 ,r�2 , . . . ,r�N and the

corresponding �R� 	 are the fiducial positions about which the
particles are localized. The level of delocalization �mean
square deviation of the positions around the fiducial posi-

tions� is related to �̃ by the relation ��r�−R� �2�=1/ �2�̃�. The
potential U��r�	�=�i,j� u�r�i−r� j� is a pairwise summation of in-
teractions having the form u�r��= +� if �r���1 and 0 or finite
values otherwise. However, there is an extra obstacle to over-
come for the case of the hardcore potentials. For the operator

L̂FP=D�i�i · ��i+	�iU��r�	� · �, the term � · ��U · � will be
singular at the hardcore boundary when it operates on the
usual localized Gaussian trial function �.

To solve a similar singularity problem appeared in the
quantum many-body system of hard spheres, Jastrow pro-
posed �26� a new trial function by adding an extra Boltz-
mann factor exp�−	U� to the original form. Here we also
adopt the Jastrow trial function

���r�	� = exp�− �
i

��i�r�i − R� i�2� − 	U��r�	�� . �7�

One may question this form of the trial function since exp�
−	U� itself should be the exact equilibrium solution of a
usual Fokker-Planck equation. Two things are different here.
One aspect is the nonequilibrium effects. The other is that
even for equilibrium cases, we study the localized phase of a
many-particle problem which has a symmetry-breaking tran-
sition from the fluid phase and therefore its probability dis-
tribution function will not be the same, but instead it will be

determined by an effective localized trial function. We need
to replace U��r�	� with localized forms eventually. With the
Jastrow term in the trial function, the singularity is formally
canceled out. To simplify the notation, we write for the dis-

placement of the particle off the fiducial site q� i=r�i−R� i below.
Since the diffusion term of the FP operator has
D�i

2�=D��2�iq� i+	�iU��r�	��2−6�i−	�iU��r�	�	� and the
drift term of the FP has D	�i · ��iU��r�	����r�	��
=D	�−�iU · �2�iq� i+	�iU�+�iU��, we can cancel out terms
of ��iU�2 and �iU by adding two parts together. This leaves

L̂FP� = �
i

�4D�i
2qi

2 − 6D�i + 2�i	Dq� i · �iU�� . �8�

The remaining term involving �q� i ·�iU�� can be calcu-
lated even for the case of hard-sphere potential. For example,
the term �q� i ·�iU�d3q� j�id

3r� j can be first rewritten

as −	−1C� j�id
3r� j exp�−� j� jqj

2��e−�iqi
2
q� i ·�i exp�−	U�d3q� i.

Then, applying the identity ��f� ·v� � · �fv��− f�� ·v��
and assuming that surface integrals go to zero, we
have �e−aq2

q� ·�exp�−	U�q���d3q� =−�exp�−	U�q���e−aq2
�3

−2aq2�d3q� . Therefore, �q� i · ��iU��d3q� i j�i
N d3r� j

=� j=1
N d3r� j	

−1�3−2�iqi
2��. Using this result, it is easy to

confirm the conservation of the probability �1�L̂FP���0.
Similarly we can calculate higher order moment operators
that are weighted by qj

n. If i� j, there is a decoupling for the
qi integrations. Otherwise, for i= j, we can use
� · �e−aq2

qnq��=e−aq2
qn�n+3−2aq2� to proceed.

We also need to evaluate integrations of the form
�id

3q� iQ�qj�exp��−�iqi
2−U��r�	��. Here Q�qj� is a polyno-

mial function of a local one-body displacement operator or
other few-body operators. These integrals generally do not
have exact solutions. It turns out the integrals we meet here
also appear in similar forms in evaluating partition functions
of the corresponding equilibrium theory of crystallization
�27� or glass transition �28�. We can thus borrow the
thermodynamic integration and the cluster expansion
method to proceed. For example, in the case of Q�qj�1, we
rewrite �id

3q� i exp��−�iqi
2−U��r�	��=Co�e−U�o. Here Co

=�id
3q� i exp��−�iqi

2�=i�� /�i�3/2 and �·�o is the Gaussian
average. We approximate �e−U�o= �ie

−ui�o�i�e−ui�x�i�.
Here ui=� j�i

1
2uij. The bracket �·�x�i� indicates the indepen-

dent average over the distribution of the displacement of the
nearest neighbor of index i. As a result, we have
�id

3q� i exp��−�iqi
2−U��r�	��=Coi���i+�i� /�i�−3/2. Here �i

are the eigenvalues of the Hessian matrix constructed from
the effective local potential � 1

2
�ūi that has the form

e−ūi = �e−ui�x�i�. Thus we rewrite the effective local potential

ūi=�iqi
2+� j�n.n.ve��R� i−R� j��. Here ve is the pairwise

Mayer f-bond potential. We denote the total effective
spring constant �̃ª�+�. Here � comes from the
effective interaction with the neighboring particles
by the Mayer f-bonds and � comes from non-
equilibrium kicking. Similarly, for the higher moments
Q�qj�=qj

n, we have ��id
3q� i�qj

n exp��−�iqi
2−U��r�	��

=Co�̃ j
−n/2��(�3+n� /2) /��3/2��i��̃i /ai�−3/2.

T. SHEN AND P. G. WOLYNES PHYSICAL REVIEW E 72, 041927 �2005�

041927-4



To evaluate �qj
2�L̂FP���, we assume spatially uniform �i

=� and �̃i= �̃. We also ignore the common normalization
factor �1 ���=Co��̃ /a�−3N/2 for now. The aforementioned op-

erator L̂FP has total three parts. For the first part, since
�qj

2�4D�2qi
2���=9D�2� 3

2
�2�̃−2 if i� j and 15D�� / �̃�2 if i= j,

we have �qj
2��i4D�2qi

2���=D�� / �̃�2�9�N−1�+15�. The
second and third part are �qj

2�−�i6D���� and
�qj

2��i2�	Dq� i ·�iU���. All together we thus have

�qj
2�L̂FP���=6D�� / �̃�. By the arguments of moment closure,

we have

�t�qj
2� = �qj

2�L̂��� �9�

Thus with a pure FP system and under equilibrium condition,

we have �t�qj
2�=0= �qj

2�L̂FP���=6D�� / �̃�. Therefore �=0
and �̃=� as we expected.

Now with the kicking operator L̂NE=�iL̂NE
�i�

added in, we have �̃��. For i� j, �qj
2 � L̂NE

�i� ��
=��1 ���� 3

2
��̃−1�� / �̃�−3/2�J0−J0��=0 and for i= j,

�qi
2 � L̂NE

�i� ��=��1 ����� / �̃�−3/2�J2−J2��. Here Jn=�d3q�q�n�
�e−�̃�q� − ���2

ef�−2��� ·q�+��2���� and Jn�=�d3q�q�ne−�̃q�2
�ef�−2��� ·q�−��2����.

For convenience, we define f�x�=��x�sux+��−x�sdx.

With the transform q� →q� +�� of J�, we can combine

two terms to a simpler form InªJn−Jn�=�d3q���q� +���n

−q�n�e−�̃q2
�ef�−2��� ·q�−��2����.

For isotropic kicking, since we need to average over di-

rections of �� and integrate over q� , it is easy to use a spherical

coordinate that has �� parallel to the polar axis. The polar

angle � reflects the angle between the direction of �� and the

potential gradient. It detects whether the particle is going
uphill or downhill. By setting xª−cos �, we use su for going
upward, against the potential for the range x� �−1,� /2q�
and use sd for going downhill for the range x� �� /2q ,1�,
since the critical angle �c=arccos xc satisfies the geometric
criterion −2��q cos �c−��2=0. We still retain azimuthal
symmetry. We thus can write

I2 = 

0

�

dq2�q2e−�̃q2�

−1

�/2q

dx�− 2q�x + �2�e2sux�q�−su��2

+ 

�/2q

1

dx�− 2q�x + �2�e2sdx�q�−sd��2�
=
 dq2�q2e−�̃q2�1 − e−��2su−2��qsu�1 + su��2 + 2��qsu�

2�2�qsu
2

+
e−��2sd+2��qsd�1 + sd��2 − 2��qsd� − 1

2�2�qsd
2 � . �10�

If su=0 �or sd=0�, the corresponding part in the brackets
� � of the above equation will be reduced to �2+�3 /4q+�q
�or �2−�3 /4q−�q�. Finally, based on Eq. �7�, we derive the
equation of the final localization strength �̃ in terms of the
mechanical supports of the neighbors with the mechanical
strength �:

6D
�̃ − ���̃�

�̃
+ �I2��̃,����

�̃
�−3/2

= 0. �11�

The equation �=���̃� self-consistently determines the me-
chanical interaction feedback given the value of the neigh-
bor’s �̃. The integral In can be ultimately rewritten in forms
of hypergeometric functions of type I. For n=2, we have
explicitly

I2��̃,�� =
�

2�̃�2�su
2 −

�

2�̃�2�su
2 �1 + su��2�e−su��2�1 − e���su�2/�̃��

�̃
�su��1 − erf��su

�

��̃
���

−
�

2su
�̃−5/2e−su��2���� �̃

�
+ 2��2su

2��1 − erf� �

��̃
�su��e���su�2/�̃ − 2�su

�

��̃
�

+
�

2�̃�2�sd
2 �1 + sd��2�e−sd��2�1 + e−���sd�2/�̃��

�̃
�sd��1 + erf��sd

�

��̃
���

−
�

2sd
�̃−5/2e−sd��2���� �̃

�
+ 2��2sd

2��1 + erf� �

��̃
�sd��e���sd�2/�̃ + 2�sd

�

��̃
� −

�

2�̃�2�sd
2 . �12�

For the case of su=0 �or sd=0� the first �or last�
two lines of the above equation will be given as
�4+2��̃��+ �̃�2��� /4�̃2 �or −�4−2��̃��+ �̃�2��� /4�̃2�.
In the special case su=sd=0, we have � / �̃
=1+��2 /6D. This agrees with the conclusion of the
small � limit �by Taylor expansions� solutions of

the square Hermitian method discussed in the next
subsection.

B. The square Hermitian variational method

Apart from the above moment closure method, one can

always generally square a non-Hermitian operator L̂ to form
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a new operator L̂†L̂ thereby making it Hermitian and there-
fore allowing now a conventional optimization over trial
functions to determine the steady states �see, for example, p.
158 of �29��. This procedure is quite difficult algebraically
for a complicated many-particle non-Hermitian operator.
Here instead we use it for a single-particle approach. First we
solve and thus obtain the total effective localization param-

eter �̃ of one tagged particle under one-particle operator l̂
with a given mechanical feedback from neighbors with local-

ized parameter �, i.e., we define �t= l̂= l̂FP+ l̂NE. Here l̂FP
=D�2+D� · �	D�umec · � and 	umec�r�=�r2. The kicking
operator acts on states as follows:

l̂NE��r�� = ���r� − ���e��r�−��� − ���r��e��r�� �13�

for persistent kicking cases, and

l̂NE��r�� =
�

4�

 dn̂���r� − n̂��e��r�−n̂�� − ��r��e��r��� �14�

for isotropic kicking cases. Here ��r��=s	�� · �−�umec� and s is
su or sd depending on whether the kicks are uphill or down-
hill.

The first step is to use the square Hermitian functional
minimization over appropriate trial functions. Then we solve
for the mechanical feedback strength � with total localiza-
tion parameter �̃ obtained from the first step of the calcula-
tion. We thus update the values of � and recalculate step one.
These two steps are iterated till the � and �̃ convergences.

The single-particle trial function that we try to minimize

has a Gaussian form �G�r� ;��=exp�−�� :r�r�+r� ·b��. Here the

off-center displacement of the fiducial sites b� is parallel to n̂
for the persistent kicking and is set to zero for the isotropic

kicking. Solving the target equation l̂�*�r��=�t�
*�r��0 can

be posed as a minimization problem with the score function
I���=�dr���t�

G�r� ;���2, since the square Hermitianized op-

erator gives �� , l̂†l̂��=��l̂��2dr�. Generally the optimal ten-
sor �� is no longer isotropic, so the final value is set as the
harmonic mean, i.e., �3��1

−1+�2
−1+�3

−1�−1, where �i are
the eigenvalues of �� .

The minimization of the above score functions was car-
ried out numerically. We now take a detour to discuss the 1D
results at the limit of small � with Taylor expansion for the
specific case under the condition su=sp=0 and persistent
kicking. Though this is not as general an approach as the
numerical calculations by variation, it gives some physical
insights. In the simple 1D case, we have

l̂��x� = �t��x�

= D�2��x� − � · �	D„− �xu�x�…��x��

+ ���x − �� − ���x� �15�

with u�x�=	−1�x2.
Up to the second order in �, we have

�t��x,t� = D�� − �x�	D„− �xu�x�…��

− ���� + �1/2�����2 + O��3� = 0. �16�

Thus for steady-state solutions, we can construct the effec-
tive potential ū�x�=	−1�̃�x−b�2. Here �̃=� / �1+��2 /2D�
and mean shift b=�� / �2�D�. The final localization param-
eter �̃ is thus seen in such cases to be smaller than the me-
chanical feedback �, i.e., kicking mobilize the particles and
destabilize the structure. Note this is always the case for
su=sd=0. However, more generally it turns out we can have
�̃�� for su+sp�1 as we shall demonstrate below.

C. Mechanical feedback and self-consistent phonon theory

Though the two methods listed give different approximate
solutions to the non-Hermitian master equation, they both
require calculating the mechanical response �=���̃�. This is
essential for the correct description of interactions between
particles and is closely related to the self-consistent phonon
�s.c.p.� theory of equilibrium crystals and glasses. The self-
consistent phonon theory was initially developed to study the
anharmonic effects of crystals �27,30,31�. Viewed from the
standpoint of thermal stability in an equilibrium system, a
particular atom’s thermal fluctuation around its fiducial posi-
tion is the same type of fluctuation as its neighbors which is
used to average the interactions. �27�. This idea was further
extended to hard-sphere amorphous systems but the summa-
tion over discrete crystalline neighboring atoms is replaced
by integration of a continuous radial distribution function
�28�. Recently, this approach was used for the network
glasses, too �32�.

There are several ways we can calculate the phonon fre-
quency �or the mechanical response ��. The crude bare po-
tential phonon approach exchanges the order of averaging
and exponentiation operations. On the other hand, Fixman’s
approach to the equilibrium self-consistent phonon method is
a more robust and systematic method that employs an expan-
sion in Hermitian functions. We follow Fixman’s s.c.p. ap-
proach that averages the Mayer f-bond potential instead of
the bare potential �27,28�. The effective potential from the
Mayer f-bond ve�R� is the logarithm of the mean of the ex-
ponentiation of the bare interaction u�R� between a tagged
particle �fixed at center� and a neighboring particle which is

fluctuating with variance ��̃−1 around its mean position R� .
More succinctly, exp�−ve�R��= �exp�−u�r���R,�̃. For a pure
hard-sphere potential, this recipe gives

	vhs
e �R� = ln�1 +

1

2
erf��R − 1���̃� −

1

2
erf��R + 1���̃�

+
��̃��−1/2

2R
�e−�̃�R − 1�2

− e−�̃�R + 1�2
�� . �17�

We can also use the Mayer f-bonds for adhesive potentials to
obtain similar equations. With our definitions of ust and usw
we can again express the final results using the error function
erf�x�.
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The information about the bare interactions u�r� �which
may be singular� is thus contained in the smoother Mayer
f-bonds. The structures of the particle assembly need only be
specified in terms of the neighboring particle distributions,
i.e., the fiducial site arrangements. Below we study localized
phases of both ordered crystalline and randomly packed
glassy structures. The total effective interactions are the sum
of Mayer f-bonds of a central particle with all of its neigh-
bors. Once we have the final potential V, the quadratic term
of the expansion makes the story self-consistent and gives
back the effective spring constant of the mechanical feed-
back �.

For calculations on the fcc lattice, we use the 12
first shell neighbor �n.n.� particles to construct Vcr�r��
=�Rj�n.n.ve�r�−R� j�. We set the resulting �cr

3��1
−1+�2

−1+�3
−1�−1; here 2��i comes from the eigenval-

ues of the Hessian matrix J which is defined by
Jij =�xi

�xj
Vcr�r��. For the fcc lattice, we generally have

�1=�2=�3.
For the randomly packed solid modeling the glass, we

average over an environment in such a way that the previous
summation over discrete sites in the crystal is replaced by an
integration over a pair distribution. While such distributions
can be found from a simulation, the fiducial site distributions
can be also approximated as the radial distribution functions
of hard-sphere liquids �28�. We have

�th,g = �	n/6�

1st.sh.

g�R�Tr � �Vs�R� �dR�

=
1

2



1

r*

drg�r�4�nr2�Vs��r�
r

�sin2 �� + Vs��r��cos2 ���
= 


1

r*

drg�r�4�nr2��1

3
�Vs��r�

r
+ �1

6
�Vs��r�� . �18�

Here r* is the upper boundary of the effective first shell
cutoff which is at the position that function r2g�r� reaches its
first minimum.

The radial distribution function g�r� is the important input
for the glass calculations. For the case of the pure hard-
sphere potential, we use the Verlet and Weis’s corrected ra-
dial distribution function �33� of simple hard-sphere fluid.
Generally for other potentials u�r�, the effective hard sphere
g�r� can still be used as the reference system with an effec-
tive radius determined from the full interaction u�r� and kBT
�34�. Here for our adhesive potentials usw and ust, we have
ref f =1, i.e., they have the same hard-core radius. We express
the effects of adhesion through only changing the strength of
Mayer f-bond due to the difference between usw/st and uhs.
Thus we do not alter the underlying structural dependence.

There is a complication for the cases of persistent kicking
when we evaluate the mechanical feedback due to the distor-
tions of the fiducial positions, i.e., we must consider the ef-
fects of the off-center shift parameter b on � which distorts
the usual static jammed structures. If the directions of the

persistently kicking motors are not inhomogeneously distrib-
uted, we can model this effect by replacing each initial po-
sition with a dispersed kernel: for the crystalline case, this

means the neighbor’s fiducial position at R� j will be further

replaced by an average over positions R� j +bn̂ with n̂ as an
arbitrary unit direction. Similarly, the radial distribution
function of the glass case will change from the initial g0�r�� to
gb�r��=�g0�r����1/4�b2����r��−r��−b�dr��.

This procedure will blur the sharp boundary of g0�r�
at r=1. For all the potentials with hardcore r=1 �as
we use throughout the present paper�, we need to
enforce the condition g�r�=0 for r�1. We thus integrate
the region of r� �0,1� and renormalize them to the region
1�r�r�, i.e., g̃b�r�=gb�r���r−1�� �1+w� where w

��0
1r2g�r�dr� / ��1

r�
r2g�r�dr�.

IV. RESULTS: THE STABILITY OF
THE FAR-FROM-EQUILIBRIUM SOLIDS

A. Effects of adhesiveness

First let us review the results for the systems considered at
equilibrium. When we turn off the kicking terms, both varia-
tional methods detailed in the method section give the same

results, i.e., for equilibrium cases when L̂NE=0, both meth-
ods return to the self-consistent phonon method. For pure
hard-sphere cases, we recovered the same numerical results
of calculations as previous researchers �28�. The stability
limit is n=0.8685 for the fcc lattice and n=0.94 for the glass
by the s.c.p. method �with the first order cutoff�. The corre-
sponding phonon frequency is �=12.422 for fcc and 19.4 for
glass.

FIG. 2. The illustration of the onset of localized phase with
nonzero order parameters by increasing density. The self-consistent
equation f�� ;n�=� only has zero solution at low density. For
n�nc, it has two nonzero fixed points. The stable solution is the
one with the derivative less than one, i.e., the one with larger value
of � of the two.
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We use the fcc case to illustrate the general strategy of
finding critical density and phonon frequency which we em-
ploy for the other cases. This is shown in Fig. 2. We see that
it is relatively more difficult to obtain highly accurate values
for critical frequency � than to simply find the critical den-
sity n, since at the critical values of self-consistent curve
f�� ;nc� is nearly tangential to the diagonal line y=x. These
two lines are almost parallel for a range of values of �. Thus
it is easy to judge whether there is a crossover �to pin down
n�, but rather more difficult to pin down the � where the
crossover happens numerically. Generally it is also more dif-
ficult to achieve high accuracy for the glass cases than it is
for crystal cases since the final integrations are somewhat
prone to numerical inaccuracies.

We are not aware of any reported calculations of adhesive
hard-sphere potentials using the self-consistent phonon even
for equilibrium solids. There are some calculations for adhe-
sive hard spheres by other methods focusing on the liquid
side of the transition such as mode coupling �35�. We first
therefore examine the effect of adhesion on equilibrium
hard-sphere systems with our method.

We show in Fig. 3 the critical densities of adhesive
spheres as functions of the dimensionless parameter charac-
terizing the strength of the adhesion, the ratio of the adhesive
energy over the thermal energy A /kBT. We do this for a
given set of width parameter d for the saw-tooth and the
square-well potentials and for the equilibrium fcc lattice and
the randomly packed structures. At small values of d, we
observe that there is first a liquefaction, then a reentrant crys-
tal transition or reentrant glass transition with increasing
A /kBT. This reentrant transition is somewhat counterintui-
tive. Some researchers who found this result via mode cou-
pling believe it to be caused by the small attractions helping
the system to form small clusters, thereby “opening up
holes” and making the system more fluid-like �36�. Overall
for large d and/or A the present treatment yields a lower

critical density with adhesion than for the corresponding
pure hard-sphere cases; reentrant transitions only occur when
d−1 and A are small.

When we compare the results for the fcc crystal and for
the glass, we see that generally increasing adhesion de-
creases the critical density. The change of the critical density
for the glass is more substantial than the corresponding
change for the stability limit of the fcc lattice. The width
parameter d has a nonlinear effect on the critical density. The
ability of d to change nc decreases when d becomes larger,
i.e., �nc /�d�0 but �2nc /�d2�0.

B. Effects of motorization

When there is nonequilibrium kicking, generally, we must
examine the critical density nc as a function of the choice of
ust/sw�r ,A ,d�, temperature, uphill and downhill cooperative
coefficient su and sd, and relative strength of nonequilibrium
effects expressed as a dimensionless ratio �ª��2 /D, i.e.,

nc = nc��,
A

kBT
,d,usw/ust� . �19�

As we previously estimated �14�, based on practical values of
cytoskeletal fibers, the range of � for the polymerization
force alone can range from 10−3–10−2 to above 1 for actin
filaments.

FIG. 3. Effects of u�r ;A ,d� on critical density nc�A ,d� without
motorization for fcc lattice and glass.

FIG. 4. The stability of hard-sphere fcc structures as functions
of � with D=0.1, �=0.05, sd=0 in �a�, su=0 in �b�, and su=sd in
�c�. The corresponding values for the adhesive case �usw with
	A=1 and d=1.1� are shown in �d�–�f�.
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By comparing the results of the two variational methods
we note that they give nearly the same results for critical
densities when � is not very large. In fact, the error between
them is less then 0.1% when ��1. The corresponding pho-
non frequencies � and �̃ also agree well with each other.

We first review the results for isotropic kicking. We show
in the left panels of Fig. 4, for the cases of pure hard sphere
on an fcc lattice, the critical density nc as a function of � at
different values of the cooperative parameters su and sd. We
see the relation is quite linear, i.e., �2nc /��2�0. The corre-
sponding adhesive sphere cases are shown at the right panel
of Fig. 4. We show in Fig. 5 the results for pure and adhesive
hard-sphere glasses. Generally we see that the critical density
grows with increasing reaction rate � for low cooperative
parameters su+sd�1, while nc actually decreases with in-
creasing � for su+sd�1. We reorganize some of the data
from Figs. 4 and 5 to show the results of nc as a function of
s at �=10 in Fig. 6. A subtle feature from these plots is that
�2nc /�su

2�0 while �2nc /�sd
2�0. The range of changes with s

for the fcc cases is larger than the corresponding ones of the
glass cases.

We show the “effective” phonon frequencies � and �̃ as
functions of density n in Fig. 7 for the case of pure hard
sphere and adhesive sphere fcc systems. We see that the dif-
ference between � and �̃ increases with �. For ��0 and
su+sd�1 we have ���̃ while for ��0 and su+sd�1, we
have ���̃.

For the persistent kicking cases, we show nc as a function
of the off center parameter b in Fig. 8. It turns out that b can
quickly rise with �. Thus the range of b shown in Fig. 8
corresponds to small nonequilibrium kicking. We see four
groups of lines corresponding to the pure hard spheres or
adhesive spheres for the fcc or the glass cases. The upper and
lower bounds correspond with the limiting cases s=0 and
s=1, respectively. As expected, the critical density nc gener-
ally decreases with increasing b.

V. CONCLUDING REMARKS

We have introduced a simple model of a collection of
motorized particles and used this model to explore the effects
of nonequilibrium energy pumping and equilibrium adhesion
to the stability of systems made up of spherical particles.

Can we use these results to get an idea of how important
nonequilibrium forces are in controlling the phases of the
cytoskeleton? In the simple spherical model, we see that
nonequilibrium motorization can have just as strong effects
as does the binding of linker proteins represented as an ad-
hesive energy term. For practical ratios of adhesive strength
over the thermal energy and dimensionless nonequilibrium
parameters A /kBT and �, we find significant changes of the
phase diagram. Thus both modulating adhesion and motor-
ization can control cytoskeleton remodeling. Thus it is quite
reasonable to stress that the nonequilibrium forces are impor-
tant determinants of cellular mechanical properties. In our

FIG. 5. The stability of hard-sphere glass as functions of � with
D=0.1, �=0.05, sd=0 in �a�, su=0 in �b�, and su=sd in �c�. The
corresponding values for the adhesive case �usw with 	A=1 and
d=1.1� are shown in �d�–�f�.

FIG. 6. The comparison of critical densities nc of adhesive and
pure hard spheres for the fcc lattice and glass. Four groups of criti-
cal densities are shown as functions of su and sd at �=10 and
�=0.25.
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view equilibrium colloidal models alone cannot completely
explain the full story of cellular dynamics. The current model
provides a basis that may be expanded to include more de-
tails relevant to specific experimental measurables �9� and to
include architectural features of cell biology relevant to com-
putational tensegrity models �37�.

We see that nonequilibrium kicking and equilibrium re-
sponses together provide the tensions and compressions to
maintain the cell shapes on the one hand, and fast remodel-
ing when stimulated on the other hand. One important aspect
of the tensegrity picture is the prestressed cytoskeleton. Thus
it is tempting to calculate important macroscopic properties
of assemblies such as the pressures and forces generated by
such far-from-equilibrium matter. This calculation is not
trivial. One certainly cannot use the usual route based on
thermodynamic relations to relate phonon � and pressure as
in �28�. Even what is meant by “pressure” might depend on

how pressure is measured. One experimental setup will in-
clude direct construction of the interface between solid walls
�or dead particles� and motorized particles. Such a problem
belongs to a general important class of nonequilibrium inter-
face problems which have interesting stability aspects, e.g., it
may have exotic properties such as violations of the Gibbs
phase rule �38�. We also note that steady states are only one
possibility for statistical tensegrity models. More generally,
one wonders whether the present model of the cytoskeleton
can have macroscopic oscillations �39,40� under certain con-
ditions. We hope to return to these issues in future works.
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FIG. 7. Phonon frequencies � and/or �̃ as a function of n for
hard sphere and adhesive sphere fcc lattices with different param-
eters �=0,5 ,10 and su=sd=0,1. We set �=0.05 and D=0.1. The
dashed lines are for ��n�. The solid lines are for �̃�n�. The two lines
coincide at equilibrium case �=0. For ��0 and su+sd�1, ���̃
and vice versa.

FIG. 8. The effect of the persistent kicking: the critical density
as a function of the off-center parameter b. Four groups of plots are
shown for glass and fcc, and for hard-sphere potential and adhesive
hard-sphere potential cases. Here adhesive u=usw�A=1,d=1.1�.

T. SHEN AND P. G. WOLYNES PHYSICAL REVIEW E 72, 041927 �2005�

041927-10



�1� T. D. Pollard and W. C. Earnshaw, Cell Biology �W.B. Saun-
ders, New York, 2002�.

�2� D. Bray, Cell Movements: From Molecules to Motility �Gar-
land Publishing, New York, 2001�, 2nd ed.

�3� H. C. Berg, Random Walks in Biology �Princeton University
Press, Princeton, 1993�, 2nd ed.

�4� S. T. Wlodek, T. Shen, and J. A. McCammon, Biopolymers
53, 265 �2000�.

�5� G. M. Whitesides and B. Grzybowski, Science 295, 2418
�2002�.

�6� J. Howard, Mechanics of Motor Proteins and the Cytoskeleton
�Sinauer Assoc., Sunderland, MA, 2001�.

�7� S. J. Gunst and J. J. Fredberg, J. Appl. Physiol. 95, 413 �2003�.
�8� B. Fabry and J. J. Fredberg, Respir. Physiol. Neurobiol. 137,

109 �2003�.
�9� B. Fabry, G. N. Maksym, J. P. Butler, M. Glogauer, D. Nava-

jas, and J. J. Fredberg, Phys. Rev. Lett. 87, 148102 �2001�.
�10� M. E. Chicurel, C. S. Chen, and D. E. Ingber, Curr. Opin. Cell

Biol. 10, 232 �1998�.
�11� N. Wang, K. Naruse, D. Stamenovic, J. J. Fredberg, S. M.

Mijailovich, I. M. Tolic-Norrelykke, T. Polte, R. Mannix, and
D. E. Ingber, Proc. Natl. Acad. Sci. U.S.A. 98, 7765 �2001�.

�12� R. Connelly and A. Back, Am. Sci. 86, 142 �1998�.
�13� D. E. Ingber, J. Cell. Sci. 116, 1157 �2003�.
�14� T. Shen and P. G. Wolynes, Proc. Natl. Acad. Sci. U.S.A. 101,

8547 �2004�.
�15� L. A. Amos and W. B. Amos, Molecules of the Cytoskeleton

�Guilford Press, New York, 1991�.
�16� T. Loisel, R. Boujemaa, D. Pantaloni, and M.-F. Carlier, Na-

ture �London� 401, 613 �1999�.
�17� S. Kuo and J. McGrath, Nature �London� 407, 1026 �2000�.
�18� T. Holy, M. Dogterom, B. Yurke, and S. Leibler, Proc. Natl.

Acad. Sci. U.S.A. 94, 6228 �1997�.
�19� T. B. Liverpool and M. C. Marchetti, Phys. Rev. Lett. 90,

138102 �2003�.
�20� K. Kruse, J. F. Joanny, F. Julicher, J. Prost, and K. Sekimoto,

Phys. Rev. Lett. 92, 078101 �2004�.
�21� D. F. Rosenbaum and C. F. Zukoski, J. Cryst. Growth 169, 752

�1996�.
�22� F. H. C. Crick and A. F. W. Hughes, Exp. Cell Res. 1, 37

�1950�.
�23� M. Dogterom and B. Yurke, Science 278, 856 �1997�.
�24� G. L. Eyink, Phys. Rev. E 54, 3419 �1996�.
�25� H. Chen, S. Chen, and R. H. Kraichnan, Phys. Rev. Lett. 63,

2657 �1989�.
�26� R. Jastrow, Phys. Rev. 98, 1479 �1955�.
�27� M. Fixman, J. Chem. Phys. 51, 3270 �1969�.
�28� J. Stoessel and P. G. Wolynes, J. Chem. Phys. 80, 4502 �1984�.
�29� H. Risken, The Fokker-Planck Equation �Springer, New York,

1996�, 2nd ed..
�30� T. R. Koehler, Phys. Rev. Lett. 17, 89 �1966�.
�31� N. Werthamer, Phys. Rev. B 1, 572 �1970�.
�32� R. W. Hall and P. G. Wolynes, Phys. Rev. Lett. 90, 085505

�2003�.
�33� L. Verlet and J.-J. Weis, Phys. Rev. A 5, 939 �1972�.
�34� J. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys.

54, 5237 �1971�.
�35� J. Bergenholtz and M. Fuchs, Phys. Rev. E 59, 5706 �1999�.
�36� K. N. Pham, A. M. Puertas, J. Bergenholtz, S. U. Egelhaaf, A.

Moussad, P. N. Pusey, A. B. Schofield, M. E. Cates, M. Fuchs,
and W. C. K. Poon, Science 296, 104 �2002�.

�37� C. Sultan, D. Stamenovic, and D. E. Ingber, Ann. Biomed.
Eng. 32, 520 �2004�.

�38� G. Grinstein, IBM J. Res. Dev. 48, 5 �2004�.
�39� H. Fujita and S. Ishiwata, Biophys. J. 75, 1439 �1998�.
�40� F. Julicher, C. R. Acad. Sci., Ser IV: Phys., Astrophys. 2, 849

�2001�.

NONEQUILIBRIUM STATISTICAL MECHANICAL… PHYSICAL REVIEW E 72, 041927 �2005�

041927-11


